第一章 绪论
1.1 气象问题与数值方法简介
1.2 离散变量与离散化
1.3 逼近的概念
1.4 误差及有关概念
1.5 习题
第二章 插值与数值逼近
2.1 引言
2.2 拉格朗日插值多项式
2.3 埃特肯(Aitken)逐次线性插值
2.4 牛顿(Newton)插值
2.5 埃尔米特(Hermite)插值
2.6 样条函数插值
2.7 最佳一致逼近切贝晓夫插值法
2.8 计算流程、程序与示例
2.9 示例
第三章 线性代数方程组的解法
3.1 引言
3.2 矩阵代数
3.3 高斯(Gauss)消去法
3.4 高斯主元消去法
3.5 解三对角形方程组的追赶法
3.6 矩阵求逆
3.7 解线性代数方程组的迭代法
3.8 计算流程、程序与示例
3.9 习题
第四章 非线性代数方程的数值解法
4.1 引言
4.2 二分法及试点法
4.3 定点迭代法
4.4 牛顿(Newton)法
4.5 非线性方程组的数值解法
4.6 计算流程、程序与示例
4.7 习题
第五章 数值积分
5.1 等矩节点求积公式
5.2 牛顿—柯特斯求积公式的精度
5.3 龙贝格(Romberg)逐次分半加速法
5.4 高斯型求积公式
5.5 计算流程、程序与示例
5.6 习题
第六章 差分方法总论
6.1 有限差分离散化方法
6.2 离散近似
6.3 初值问题养分格式的有效性
6.4 习题
第七章 常微分方程初值问题的数值解法
7.1 引言
7.2 Euler方法和改进的Euler方法
7.3 龙格-库塔方法
7.4 阿当姆斯方法
7.5 哈明方法
7.6 稳定性分析
7.7 初值问题几种实用时间积分格式及其稳定性分析
7.8 一阶常微分方程组的数值解法
7.9 计算流程、程序与示例
7.10 习题
第八章 偏微分方程的差分解法
8.1 偏微分方程的一些性质
8.2 偏微分方程的分类
8.3 偏微分方程差分格式的稳定性
8.4 抛物型方程的差分解法
8.5 双曲型方程的差分解法
8.6 椭圆型方程的差分解法
8.7 示例
8.8 习题
第九章 常微分方程数值解法在大气化学的应用示例
9.1 大气化学动力学方程特征
9.2 大气化学动力学方程常用解法
9.3 大气化学动力学方程数值解法精度试验
9.4 结语与讨论
9.5 讨论
第十章 偏微分方程数值解精度实例试验
10.1 引言
10.2 平流(输送)方案及误差分析
10.3 区域数值预报模式(MM5)精度实例试验
10.4 高分辨区域输送模式(EM3)精度实例试验
10.5 结语与讨论
10.6 思考题
附录
参考文献